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Summary The accelerated failure time (AFT) model assumes a linear relationship between the

event time and the covariates. We propose a robust weighted least-absolute-deviations (LAD)

method for estimation in the AFT model with right-censored data. This method uses the Kaplan-

Meier weights in the LAD objective function to account for censoring. We show that the proposed

estimator is root-n consistent and asymptotically normal under mild assumptions. The proposed

estimator can be easily computed using existing software, which makes it especially useful for data

with medium to high dimensional covariates. The proposed method is evaluated using simulations

and demonstrated with two clinical data sets.

KEYWORDS: Asymptotic normality; Kaplan-Meier weights; Least absolute deviations; Right

censored data; Robust regression.
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1. Introduction

The accelerated failure time (AFT) model is a linear regression model in which the response

variable is the logarithm or a known monotone transformation of a failure time (Kalbfleisch and

Prentice, 1980). As a useful alternative to the Cox model (Cox, 1972), this model has a more

intuitive linear regression interpretation, see Wei (1992) for a lucid discussion. Semiparametric

estimation in the AFT model with an unspecified error distribution has been considered by

many authors. Two methods have received special attention. One method is the Buckley-James

estimator which adjusts censored observations using the Kaplan-Meier estimator in the least squares

regression. The other is the rank based estimator which is motivated from the score function of the

partial likelihood, see for example, Prentice (1978); Buckley and James (1979); Ritov (1990);

Tsiatis (1990); Wei, Ying and Lin (1990); Ying (1993); and Jin, Lin, Wei and Ying (2003), among

others.

For uncensored data, the least-absolute-deviation (LAD) method has received much attention

due to its robustness property with respect to the response variable in the regression (Bassett and

Koenker 1978; Koenker and Bassett 1978). Powell (1984) and Newey and Powell (1990) proposed

LAD estimators in regression models with censored response when the censoring variables are

always observable. Ying, Jung and Wei (1995) proposed a median regression estimator in the AFT

model with right-censored response variable. They pointed out that, in addition to its robustness

property, the LAD method is particularly attractive for the AFT model due to the simple fact that

the median is well defined for censored data as long as censoring is not too heavy. Yang (1999)

and Subramanian (2002) also considered median based regression methods for censored data.

These estimators have rigorous theoretical justification under appropriate conditions. However,

they are difficult to compute since the estimating equations for these estimators involve estimation

of survival or hazard functions, which in turn involve the unknown regression parameters. Most

of these approaches either demand a brutal searching procedure in a high dimensional coefficient
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space, or need to use stochastic algorithms such as the simulated annealing (Lin and Geyer, 1992).

However, brutal search or simulated annealing can be slow and difficult to implement. There

appear to be no computer programs readily available for computing these estimators. This makes

application of these methods in practice difficult.

In this paper, we propose a weighted LAD estimator in the AFT model using the Kaplan-Meier

weights. For simplicity of notations, we call this estimator the KMW-LAD estimator. The use of

the Kaplan-Meier weights to account for censoring was first proposed by Stute (1993, 1996, 1999)

in least squares estimation of the AFT model. An important advantage of the proposed KMW-

LAD estimator is that it can be computed using existing software. The computational simplicity

is especially valuable for data with medium to high dimensional covariates. The KMW-LAD

estimator also has rigorous theoretical justification under appropriate conditions.

In the following, we first define the KMW-LAD estimator in the AFT model. In Section 3, we

state the consistency and asymptotic normality results for the KMW-LAD estimator and discuss

the assumptions needed for these results. These assumptions are different from but comparable

to those for existing estimators of the AFT model. In Section 4, we use simulations to evaluate

the KMW-LAD estimator in finite samples and illustrate it using two clinical trial data sets. Some

concluding remarks are given in Section 5.

2. The LAD Regression for Censored Data

Let Ti be the logarithm of the failure time andXi = (Xi1, . . . , Xid)
′ a d-dimensional covariate

vector for theith subject in a random sample of sizen. The AFT model assumes

Ti = β0 + Xi1β1 + · · ·Xidβd + εi, i = 1, . . . , n, (1)

whereβ0 is the intercept,β1, . . . , βd are the regression coefficients andεi is the error term with

an unknown distribution function. WhenTi is subject to right censoring, we can only observe
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(Yi, δi, Xi) with Yi = min{Ti, Ci}, whereCi is logarithm of the censoring time andδi = 1{{Ti ≤

Ci} is the censoring indicator. Suppose that a random sample(Yi, δi, Xi), i = 1, . . . , n with the

same distribution as(Y, ∆, X) is available.

Let F̂n be the Kaplan-Meier estimator of the distribution functionF of T (Kaplan and Meier,

1958). Following Stute and Wang (1993),F̂n can be written aŝFn(y) =
∑n

i=1 wni1{Y(i) ≤ y},

wherewni’s are the Kaplan-Meier weights and can be expressed as,

wn1 =
δ(1)

n
, and wni =

δ(i)

n− i + 1

i−1∏
j=1

(
n− j

n− j + 1

)δ(j)

, i = 2, . . . , n.

HereY(1) ≤ · · · ≤ Y(n) are the order statistics ofYi’s andδ(1), . . . , δ(n) are the associated censoring

indicators. Similarly, letX(1), . . . , X(n) be the associated covariates of the orderedYi’s. Let β =

(β0, β1, . . . , βd). The KMW-LAD estimatorβ̂n is the minimizer of

Ln(β) =
n∑

i=1

wni|Y(i) − β0 −X(i1)β1 − · · · −X(id)βd|. (2)

Robustness is gained by using the LAD objective function.β̂n can be computed using the R

functionrq in the R libraryquantreg. The LAD regression program is also available in many other

packages, such as the LAV command in the IML library in SAS, and the quantile regression (qreg)

procedure in STATA.

As shown in Theorems 1 and 2 below, the KMW-LAD estimator is consistent and and

asymptotically normal. However, the asymptotic variance does not have a simple form. In

particular, the conditional density function of the error term is involved in the asymptotic variance

in the termE(ZZ ′fε(0|Z)). Although in principle we can estimateE(ZZ ′fε(0|Z)) using a kernel

estimator, this is not straightforward due to censoring. Therefore, we propose the following

nonparametric bootstrap (Efron and Tibshirani, 1993) for inference.
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Samplem ≈ 0.632n from the n observations without replacement. The bootstrap sample

is estimated following the same procedure as for the complete sample. The bootstrap procedure

is then repeatedB times. After proper scale adjustment, the sample variance of the bootstrap

estimates provides an estimate of the variance ofβ̂n. We usem = 0.632n since the expected

number of distinct bootstrap observations is about0.632n. Computationally, it may be more

efficient to use a smaller bootstrap sample size. Simulation studies in Section 4 are used to

investigate finite sample performance of this bootstrap procedure.

3. Large Sample Properties

We now state the consistency and asymptotic normality results forβ̂n. Denoteβ0 as the unknown

true value ofβ. We first introduce notations needed for stating these results. LetH denote the

distribution function ofY . Let τY , τT and τC be the end points of the support ofY, T and C,

respectively. LetZ = (1, X1, . . . , Xd)
′ = (Z0, Z1, . . . , Zd)

′ andF 0 be the joint distribution of

(Z, T ). Denote

F̃ 0(z, t) =





F 0(z, t), t < τY

F 0(z, τY−) + F 0(z, {τY })1{τY ∈ A}, t > τY

,

whereA denotes the set of atoms ofH. Define two sub-distribution functions:

H̃11(z, y) = P (Z ≤ z, Y ≤ y, δ = 1), H̃0(y) = P (Y ≤ y, δ = 0).
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Let sign(x) = −1, 0, 1 if x < 0, = 0, > 0, respectively. Forj = 0, . . . , d, denote

γ0(y) = exp

{∫ y−

0

H̃0(dw)

1−H(w)

}
,

γ1j(y; β) =
1

1−H(y)

∫
1{w>y}sign(w − z′β)zjγ0(w)H̃11(dz, dw),

γ2j(y; β) =

∫∫
1{v<y,v<w}sign(w − z′β)zjγ0(w)

[1−H(v)]2
H̃0(dv)H̃11(dz, dw).

For j = 0, 1, . . . , d, let

ψj = Zjsign(Y − Z ′β0)γ0(Y )δ + γ1j(Y ; β0)(1− δ)− γ2j(Y ; β0),

andσij = Cov(ψi, ψj). DenoteΣ = (σij)0≤i,j≤d. We assume the following conditions:

A1: Let Fε(·|z) be the conditional distribution function ofε given Z = z and fε(·|z) its

conditional density function. ThenFε(0|z) = 0.5, and fε(e|z) is continuous ine in a

neighborhood of0 for almost allz.

A2: T andC are independent andP (T ≤ C|T, Z) = P (T ≤ C|T ).

A3: τT < τC or τT = τC = ∞.

A4: E[ZZ ′fε(0|Z)] is finite and nonsingular.

A5: (a) The covariateZ is bounded and the right end point of the support ofZ ′β0 is strictly less

thanτY ; (b) E [‖Z‖2γ2
0(Y )δ] < ∞ and

∫ |zj|D1/2(w)F̃ 0(dz, dw) < ∞, for j = 0, . . . , d,

whereD(y) =
∫ y−
0

[(1−H(w))(1−G(w))]−1G(dw). HereG is the distribution function of

the censoring timeC.

In (A1), we only need that median(ε|X = x) = 0. The distribution ofε can depend on

covariates. This allows heteroscedastic error terms. For example, the results below hold forεi =
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σ(Xi)ε0i, whereε0i’s are independent and identically distributed with median 0. This is weaker

than the corresponding assumption in the Buckley-James method (Buckley and James, 1979) and

the rank based method (Jin et al. 2003), where the error termsεi’s are assumed to have a common

distribution and to be independent ofXi’s. (A2) assumes thatδ is conditionally independent of the

covariateX given the failure timeY . It also assumes thatY andC are independent, which is the

same as that for the Kaplan-Meier estimator. However, we note that (A2) does allow the censoring

variable to be dependent on the covariates. In comparison, in the Buckley-James and rank based

estimators, it is assumed thatT − β0 − X ′β andC − β0 − X ′β are conditionally independent

given X. (A3) ensures that the distribution ofT can be estimated over its support. It is part of

the conditions for the identification ofβ0 in the model. (A4) is the same as the assumption for

the consistency and asymptotic normality of the LAD estimator in linear regression models. (A1)–

(A4)ensures identifiability ofβ0 and consistency of the KMW-LAD estimator. (A5a) and (A5b)

are technical assumptions for proving asymptotic normality. (A5b) together with (A4) entails finite

asymptotic variance of the KMW-LAD estimator. (A5c) guarantees that the bias of Kaplan-Meier

integral is in the order ofo(n−1/2). It is related to the degree of censoring and the tail behavior of

the Kaplan-Meier estimator. Therefore, the assumptions needed for theoretical justification of the

KMW-LAD estimator are quite mild and comparable to those of the Buckley-James and rank based

estimators.

Theorem 1. (Consistency) Suppose assumptions (A1) – (A3) and (A4a) hold, thenβ̂n →P

β0 asn →∞.

Theorem 2. (Asymptotic Normality) Suppose that assumptions (A1) – (A5) hold. LetA =

2E(ZZ ′fε(0|Z)). Then

√
n(β̂n − β0) = A−1

√
n

n∑
i=1

wniXisign(Yi − Z ′
iβ0) + op(1).
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In particular,
√

n(β̂n − β0) →D N(0, A−1ΣA−1).

Theorem 1 establishes the asymptotic validity of the KMW-LAD estimator in the sense it

is consistent. Theorem 2 shows that the KMW-LAD estimator has the standard and desired

asymptotic properties of root-n rate of convergence and asymptotically normality. However, as

indicated above, the asymptotic variance matrix involves the conditional densityfε(·|z) at 0 in the

expression ofA. So a simple plug-in variance estimator is not available. We suggested using the

0.632n nonparametric bootstrap for variance estimation. Consistency of this bootstrap procedure

can be proved in a similar way as in Ma and Kosorok (2005).

4. Simulation Studies and Examples

In this section, we use simulations to evaluate the finite sample performance of the KMW-LAD

estimator. We also use two real data sets to illustrate the use of the KMW-LAD estimator.

4.1 Simulation studies

We first compare the KMW-LAD estimator with the median regression estimator of Ying et al.

(1995). Consider the AFT model with a single covariate. We set the sample size 100 and(β0, β1) =

(0, 1). The covariatesX are generated from theU(0, 1) distribution. In examples 1–3, the errors

are normally distributed with mean 0 and standard deviation 0.5. Censoring variables are generated

independent of the covariates and the event. The censoring rates for examples 1–3 are0%, 30% and

70%, respectively. Examples 4–6 are similar to example 1–3, respectively. The only difference is

that the errors for examples 4–6 have a Cauchy distribution, which has heavier tails than the normal

distribution. The simulation settings here are similar to those in Ying et al. (1995). Summary

statistics based on 200 replicates are given in Table 1. It can be seen that both approaches behave

well under all simulated scenarios. The biases of the proposed estimator are negligible. The sample

standard deviations and the mean squared errors of the proposed estimator are comparable with or

slightly smaller than the counterparts from the estimator of Ying et al. (1995). The accuracy of the
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proposed approach decreases as the censoring rate increases, as expected. The proposed estimator

is more stable for errors with less variations.

We use the following simulation study to assess the bootstrap inference procedure. Consider

the AFT model with a three-dimensional covariate. We set sample size 100 and(β0, β1, β2, β3) =

(0, 1, 1, 1). In example 7, the covariates are generated in a manner such that the pairwise correlation

coefficients between theith and thejth components are0.5|i−j|. Errors are generated as normally

distributed with mean 0 and standard deviation 0.5. In example 8, covariates are independently

generated. For both examples, censoring variables are generated independent of the covariates

and the event. The censoring rates are∼ 30%. Confidence intervals are constructed using the

nonparametric bootstrap, based on the asymptotic normality results in Theorem 2. The marginal

empirical coverage rates of95% confidence intervals are(0.965, 0.940, 0.950, 0.950) for example

7 and(0.945, 0.960, 0.955, 0.950) for example 8, based on 200 replicates and 100 bootstrap for

each sample. Extensive simulation studies under different simulated scenarios all yield similar,

satisfactory empirical coverage rates.

We also conduct simulation studies to examine the sensitivity of the proposed approach to

violation of assumption (A2). Let the sample size be 100 and the generating parameter value

(β0, β1) = (0, 1). Let X beU(0, 1) distributed. In examples 9 and 10,T is normally distributed

with meanX and variance 0.025. In examples 11 and 12,T is normally distributed with mean

X and variance0.025X. The censoring variables are normally distributed with meanC + X and

variance 0.025. The censoring rates are 0.25 for example 9 and 11, and 0.50 for examples 10 and

12. For examples 9–12, the mean correlation coefficients between the event time and the censoring

are 0.768, 0.765, 0.814, 0.817, respectively, which indicate strong correlations. Simulation based

on 200 replicates shows that the sample means of the replicates are very close to the true values

(results not shown here). The empirical coverage rates of the95% confidence intervals based on the

nonparametric bootstrap are 0.915, 0.915, 0.920 and 0.925 forβ1 of examples 9–12, respectively.
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So even if assumption A2 is seriously violated, the proposed approach may still behave reasonably

well.

4.2 Small cell lung cancer data

We use the lung cancer study data in Ying et al. (1995) as the first example to demonstrate the

proposed method. For patients with small lung cancer (SCLC), the standard therapy is to use

a combination of etoposide and cisplatin. However, the optimal sequencing and administration

schedule have not been established. The data are from a clinical study which was designed to

evaluate two regimen: Arm A: cisplatin followed by etoposide; and Arm B: etoposide followed

by cisplatin. In this study, 121 patients with limited-stage SCLC were randomly assigned to these

two groups, with 62 patients to A and 59 patients to B. At the time of the analysis, there was no

loss to follow-up. Each death time was either observed or administratively censored. Therefore,

the censoring variable does not depend on the covariates, which are the treatment indicator and

patients’ entry age. LetT be the base 10 logarithm of the patients’ failure time. LetX1 = 0 if the

patient is in Group A and 1 otherwise. LetX2 denote the patients’ entry age. We assume the AFT

modelT = β0 + β1X1 + β2X2 + ε. The data and model settings are the same as in Ying et al.

(1995).

The proposed approach yield the following estimates:

β̂0 = 2.693(0.165), β̂1 = −0.146(0.049) and β̂2 = 0.001(0.003),

where the numbers in parentheses are the estimated standard errors obtained using the

nonparametric bootstrap. The median regression estimates of Ying et al. (1995) (reproduced from

their paper) are

β̂0 = 3.028, β̂1 = −0.163(0.090) and β̂2 = −0.004(0.005).
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Estimates of the covariates effects from the two methods are reasonably close. The KMW-LAD

estimate has smaller estimated standard errors. The effect ofX1 is modestly significant, which

indicates that Arm A tends to give better results than Arm B. The effect of entry age is not

significant. As pointed in Ying et al. (1995), one advantage of the AFT model is that the median

survival time for a prospective patient can be predicted based on above estimates.

4.3 PBC data

Between 1974 and 1984, the Mayo Clinic conducted a double-blinded randomized clinical trial in

primary cirrhosis of the liver (PBC). 312 patients participated in the trial. There are 18 covariates in

this data set. We focus on the 276 patients with complete records only. Descriptions of this data set

can be found in Fleming and Harrington (1991), where the Cox model is used in the analysis. As an

alternative, we apply the AFT model using the proposed KMW-LAD estimator as an illustration.

log transformations of the covariatesalkphos, bili, chol, copper, platelet, protime, sgot andtrig

are first made, so that the marginal distributions of those covariates are closer to normal. We also

apply the logarithm transformation to the observe time.

The KMW-LAD estimates and corresponding estimated standard errors are shown in Table 2.

As a comparison, we also include the estimates obtained using the Cox model in Table 2. Although

estimates from two different models are not directly comparable, we can see that the biological

conclusions, in terms of positive or negative association with survival, are similar. Here we note

that because the Cox model models the conditional hazard function, while the AFT model models

the failure time directly, opposite signs of the corresponding regression coefficients in two models

indicate qualitative agreement. Because the dimension of the covariates is relatively high, we are

not able to apply the existing censored median regression estimator for the AFT model, due to

computational difficulties.

5. Concluding remarks
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We have proposed the KMW-LAD estimator for the AFT model, following the weighted least

squares estimator of Stute (1993, 1996). We have shown that, under appropriate conditions, the

KMW-LAD estimator is root-n consistent and asymptotically normal. As the median regression

estimator of Ying et al. (1995), the KMW-LAD estimator does not require the errors to be

identically distributed. Simulation studies suggest that the KWM-LAD estimator and the proposed

nonparametric bootstrap work well with small sample sizes when the degree of censoring ranges

from mild to heavy. The main advantage of the KMW-LAD estimator over many of the estimators

for the AFT model, including the Buckley-James estimator, the rank based estimators, and the

existing censored median regression estimators, is that it can be easily computed by many existing

softwares. This makes it easier to apply the KMW-LAD estimator to the analysis of censored data

in practice, especially with medium to high dimensional covariates.

The KMW-LAD estimator does not require independence between the the censoring variable

and covariates. However, it does require independence between the censoring time and the event

time. In many studies, such as the small cell lung cancer study, this assumption is reasonable,

since censoring was done administratively. Simulation studies reported in Section 4 show that the

coverage rate of the confidence intervals is slightly lower than the nominal 95% rate when the

censoring variable and the event are strongly correlated (correlation coefficients ranging from 0.77

to 0.82). The same simulation studies also show that actual coverage rate of 92% is close to the

nominal rate of 95%. This suggests that the KMW-LAD estimator is quite robust to the departure

of independence assumption. However, in general if the independence assumption is not satisfied,

caution is needed in applying the proposed KMW-LAD estimator.
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Appendix

We now prove Theorems 1 and 2. The proofs use the convergence results for Kaplan-Meier

weighted statistics of Stute (1993, 1996). They also heavily rely on the empirical process theory

and the methods of Hjort and Pollard (1993) for asymptotics in convex minimization problems.

Proof of Theorem 1 (Consistency): Let Mn(β) =
∑n

i=1 wni[|Y(i)−Z′(i)β|− |Y(i)−Z′(i)β0|]. Then

the minimizers ofMn are identical to those ofLn in (2), sinceMn is a shift ofLn by a constant

term independent ofβ. Because theL1 norm is convex,Mn is a convex function ofβ.
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In Stute (1993), it was proved that for any measurable functionϕ,

Sϕ
n ≡

n∑
i=1

wniϕ(z(i), y(i)) → Sϕ ≡
∫

ϕdF̃ 0, a.s.

provided that
∫ |ϕ|dF 0 is finite. Applying this result toϕβ(z, t) = |t− z′β| − |t− z′β0|, when

τT < τC or τY = ∞, we obtain

Mn(β) −→ M(β), a.s., for any fixedβ ∈ Rd+1, (3)

where the limit

M(β) ≡ E [|T − Z′β| − |T − Z′β0|]

= E

[∫ Z′(β−β0)

0

2Fε(e|Z)− 1 de

]
.

By (A1),

∂M(β)

∂β
|β=β0

= 0.

By (A1) and (A4),

∂M(β)

∂β
= 2E

[
ZZ′fε

(
Z′(β − β0)|Z

)] ≥ 0

and strict inequality holds forβ 6= β0 in a neighborhood ofβ0. Thus,

h(δ) ≡ inf
‖β−β0‖=δ

M(β) > 0, for anyδ > 0. (4)

By the convexity lemma of Pollard (1991) for any compact setK in a convex open subset of

Rd+1,

sup
β∈K

|Mn(β)−M(β)| →P 0 (5)
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follows the convexity ofϕβ(z, t) as a function ofβ and (3). By Lemma 2 of Hjort and Pollard

(1993),β̂n →P β0.

Proof of Theorem 2 (Asymptotic Normality): Let

Mn(s) = n

n∑
i=1

wni

[|Y(i) − Z ′
(i)(β0 + n−1/2s)| − |Y(i) − Z ′

(i)β0|
]
,

and

Rn(z, y; s) = |y − z′(β0 + n−1/2s)| − |y − z′β0|+ n−1/2sign(y − z′β0)z
′s.

Write

Mn(s) = n

n∑
i=1

wniRn(Z(i), Y(i); s)− n1/2

n∑
i=1

wnisign(y(i) − Z ′
(i)β0)Z

′
(i)s.

Let Qn(s) = n
∑n

i=1 wniRn(Z(i), Y(i); s). We first show that, for any fixeds,

Qn(s) →P
1

2
s′As.

Introduce the empirical counterparts ofH(y), H̃0(y) andH̃11(z, y):

Hn(y) = n−1

n∑
i=1

1{Yi ≤ y}

H̃0
n(y) = n−1

n∑
i=1

1{Yi ≤ y, δi = 0}

H̃11
n (z, y) = n−1

n∑
i=1

1{Zi ≤ z, Yi ≤ y, δi = 1}.

By Lemma 5.1 of Stute (1996),

Qn(s) =

∫
nRn(z, y; s) exp

{∫ y−

−∞
n ln(1 +

1

n(1−Hn(u))
)H̃0

n(du)

}
H̃11

n (dz, dy).
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DecomposeQn(s) into 4 parts:

Qn(s) = In1 + In2 + In3 + In4,

where

In1 =

∫
nRn(z, y; s) exp

{∫ y−

−∞

H̃0(du)

1−H(u)

}
H̃11(dz, dy),

In2 =

∫
nRn(z, y; s) exp

{∫ y−

−∞

H̃0(du)

1−H(u)

}
(H̃11

n − H̃11)(dz, dy),

In3 =

∫
nRn(z, y; s)

(
exp

{∫ y−

−∞

H̃0
n(du)

1−Hn(u)

}
− exp

{∫ y−

−∞

H̃0(du)

1−H(u)

})
dH̃11

n (z, y),

In4 =

∫ (
exp

{∫ y−

−∞
n ln(1 +

1

n(1−Hn(u))
)H̃0

n(du)

}
− exp

{∫ y−

−∞

H̃0
n(du)

1−Hn(u)

})

×nRn(z, y; s) H̃11
n (dz, dy).

Under (A3) and (A4), the first term

In1 =

∫
nRn(z, y; s) exp

{∫ y−

−∞

H̃0(du)

1−H(u)

}
H̃11(dz, dy),

=

∫
nRn(z, y; s)F̃ 0(dz, dy)

= E[nRn(Z, T ; s)] = s′E[ZZ ′fε(0|Z)]s + o(1).

The second term

In2 =
n∑

i=1

nRn(zi, yi; s)δiγ0(yi)− E[nRn(Z, T ∧ C; s)δγ0(T ∧ C)]

= Gn

(√
nRn(z, t ∧ c; s)δγ0(t ∧ c)

)

With condition (A5b),In2 converges to 0 in probability by Lemma 19.31 of Van der Vaart (1998).
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For the third termIn3, we first note that, forη < τY ,

sup
y≤η

∣∣∣∣∣exp

{∫ y−

−∞

H̃0
n(du)

1−Hn(u)
−

∫ y−

−∞

H̃0(du)

1−H(u)

}
− 1

∣∣∣∣∣

= sup
y≤η

∣∣∣∣∣exp

{∫ y−

−∞

H̃0
n(du)

1−Hn(u)
−

∫ y−

−∞

H̃0
n(du)

1−H(u)
+

∫ y−

−∞

H̃0
n(du)

1−H(u)
−

∫ y−

−∞

H̃0(du)

1−H(u)

}
− 1

∣∣∣∣∣
= |exp{oP (1) + oP (1)} − 1| = oP (1),

where the second equality follows the generalized Glivenko-Cantelli theorem (Van der Vaart and

Wellner 1996). We also have

Rn(z, y; s) =





2
(
n−1/2z′s− (y − z′β0)

)
1{z′β0 < y < z′(β0 + n−1/2s)}, z′s > 0

−2
(
n−1/2z′s− (y − z′β0)

)
1{z′(β0 + n−1/2s) < y < z′β0}, z′s < 0

,

Thus under (A5a),

In3 =

∫
nRn(z, y; s)γ0(y)

(
exp

{∫ y−

−∞

H̃0
n(du)

1−Hn(u)
−

∫ y−

−∞

H̃0(du)

1−H(u)

}
− 1

)
H̃11

n (dz, dy)

= oP (1)

∫
nRn(z, y; s)γ0(y)H̃11

n (dz, dy)

= oP (1)(In1 + In2)

= oP (1).

For the last termIn4,

In4 =

∫
nRn(z, y; s) exp

{∫ y−

−∞

H̃0
n(du)

1−Hn(u)

}

[
exp

{∫ y−

−∞
n ln(1 +

1

n(1−Hn(u))
)− 1

1−Hn(u)
H̃0(du)

}
− 1

]
H̃11

n (dz, dy)

The expression in the square brackets is bounded between[−2n(1 −Hn(y−))]−1 and 0. Because
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nRn(z, y; s) vanishes wheny goes beyondz′β0 or z′(β0 + n−1/2s), by the generalized Glivenko-

Cantelli theorem and condition(A5a),

In4 = OP (n−1)

∫
nRn(z, y; s) exp

{∫ y−

−∞

H̃0
n(du)

1−Hn(u)

}
H̃11

n (dz, dy)

= OP (n−1)(In1 + In2 + In3)

= oP (1)

Therefore

Mn(s) =
1

2
s′As− s′n1/2

n∑
i=1

wnisign(y(i) − z′(i)β0)z(i) + oP (1).

Under (A2)–(A5), by Theorem 3.1 in Stute (1996),

n1/2

n∑
i=1

wnisign(Y(i) − Z′(i)β0)Z(i) →D N(0, Σ).

By the Basic Corollary of Hjort and Pollard (1993), we have

√
n(β̂n − β0) = A−1

√
n

n∑
i=1

wniZisign(Yi − Z ′
iβ0) + op(1).

This completes the proof.
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Table 1. Simulation study: comparison of the proposed approach with Ying’s approach.(β0, β1) =
(0, 1). The values below are sample means (standard deviations) and median of mean squared
errors.

Ying KMW-LAD
Example β0 β1 mse β0 β1 mse

1 -0.004 (0.128) 1.004 (0.224) 0.034 0.007 (0.125) 0.991 (0.218) 0.031
2 0.011 (0.146) 1.005 (0.305) 0.054 -0.029 (0.132) 0.860 (0.247) 0.054
3 0.009 (0.253) 0.999 (0.463) 0.154 -0.101 (0.224) 1.005 (0.455) 0.117
4 -0.021 (0.162) 1.042 (0.283) 0.051 -0.007 (0.166) 1.021(0.292) 0.058
5 -0.032 (0.232) 1.039 (0.412) 0.114 -0.050 (0.214) 1.001 (0.363) 0.083
6 -0.024 (0.321) 1.058 (0.558) 0.264 -0.068 (0.300) 0.970 (0.506) 0.179
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Table 2. PBC data: comparison of the KMW-LAD estimate with the Cox model estimate. s.e.:
standard error.

Cox KMW-LAD
covariate estimate s.e. estimate s.e.
intercept NA NA 3.974 6.190
age 0.031 0.011 -0.012 0.014
alb -0.612 0.300 0.464 0.385
log(alkphos) 0.039 0.147 0.246 0.155
ascites 0.211 0.377 -0.543 0.826
log(bili) 0.632 0.178 -0.153 0.245
log(chol) 0.162 0.292 -0.032 0.378
edtrt 0.918 0.380 -0.854 0.926
hepmeg -0.087 0.257 0.037 0.347
log(platelet) 0.132 0.285 -0.261 0.304
log(protime) 2.482 1.348 1.815 1.799
sex -0.182 0.318 0.035 0.383
log(sgot) 0.406 0.309 -0.040 0.388
spiders 0.049 0.241 -0.123 0.318
stage 0.366 0.178 -0.071 0.140
trt -0.006 0.212 0.127 0.243
log(trig) -0.144 0.251 -0.192 0.381
log(copper) 0.284 0.176 -0.129 0.207
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